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The vibrational structure of the photoelectron spectrum of ammonia, the simplest molecule undergoing a
large displacement of its equilibrium geometry upon photoionization, is analyzed by evaluating the
Franck-Condon integrals at the anharmonic level of approximation. It is shown that if the rectilinear Cartesian
representation of normal modes is adopted Duschinsky’s transformation yields a too large displacement of
the bond distance coordinate, with the appearance of several progressions which are not observed in the
experimental spectrum. This apparent failure is completely corrected by the inclusion of anharmonic couplings
between the principal active mode, the out of plane bending of the planar cation, and the totally symmetric
stretching mode, leading to a satisfying reproduction of the observed spectrum and to a more convincing
assignment of the weaker progression observed in the high-resolution spectrum.

Introduction

Ammonia is a very interesting molecule for experimental and
theoretical spectroscopists. On one hand, it is a prototype of
floppy molecules1-3 because in the ground electronic state it
exhibits two distinct equilibrium nuclear configurations, which
interconvert each other along a large amplitude motion, the so-
called umbrella motion. The inversion motion causes the
splitting of all the rovibrational energy levels, thus providing a
set of experimental data useful for testing the accuracy of
sophisticated theoretical models for treating strong anharmonic
effects.4,5 On the other hand, ammonia is among the smallest
molecules which undergo significantly large displacements of
their equilibrium nuclear geometries upon excitation. Those
displacements reflect into very broad absorption bands, often
characterized by long, well-resolved vibrational progressions,
which are of difficult assignment because they involve highly
excited vibrational states, whose wave functions could be
significantly affected by anharmonic effects. Indeed, ammonia
presents broad absorptions both in the electronic and in the
photoelectron spectra,6-8 one of which, the well-resolved
2A1′′r X̃1A1 transition, observed in the gas-phase photoelectron
spectrum of ammonia (Figure 1), has been a matter of
controversial point of views.

In this paper, we will afford, once again, the calculation of
the Franck-Condon factors for this electronic transition. The
reason for resuming such an old problem is connected with the
fact that in the past the best agreement with the experimental
results has been obtained by using approaches which do not
make use of the normal modes of both electronic states and
therefore of the Duschinsky transformation between them.9-12

Since Duschinsky’s transformation is a very powerful tool for
understanding radiative and nonradiative electronic transition,
we believe that a better understanding of the reasons of this
apparent failure in such a simple case as ammonia, as well as
the attempt of finding out possible solutions, is in order.

It is well-known that in the case an electronic transition takes
place between two states exhibiting a large displacement of their

equilibrium positions the calculation of Franck-Condon (FC)
factors may pose problems, especially when the rectilinear
Cartesian representation of normal modes is adopted.13,14 That
happens because in rectilinear coordinates a large displacement
along a bending coordinate always implies a motion along a
stretching coordinate.15 Indeed, in the case of the V r N
transition of ethylene, calculation of FC factors carried out in
harmonic approximation and employing the Cartesian repre-
sentation of normal modes led to a computed spectrum which
was structureless and broad, characterized by a bandwidth much
larger than its experimental counterpart.14 The broadness was
due to the appearance of vibrational progressions of the torsional
mode with the simultaneous excitation of the symmetric CH
stretching normal mode, to which Duschinsky’s transformation
of normal modes in Cartesian representation assigns a large
equilibrium position displacement. This large displacement has
no experimental counterpart; neither vibrational progressions
have been assigned to this mode nor the resonance Raman
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Figure 1. Lowest energy band of the photoelectron spectrum of
ammonia, reproduced with permission from Rabalais et al. (J. Chem.
Phys. 1973, 58, 3370-3372).
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spectrum indicated any significant change in the CH bond
length.16 As for ammonia, even in the case of ethylene,
approaches which do not make use of the normal modes of both
electronic states give better results.17,18 However, for ethylene
it was sufficient to resort to the internal coordinate representation
of normal modes for obtaining a theoretical spectrum whose
shape nicely agreed with the experimental data,14 but it must
be noted that for ethylene the complexity of the spectrum, with
the presence of a continuum structure at lower wavelengths,
does not allow for a definitive assignment of all the vibronic
peaks.19

The 2A1′′ r X̃1A1 transition of ammonia is more intriguing
and represents a much better test case for the computation of
FC factors because it exhibits a high resolved spectrum, without
any overlapping continuum, which could make difficult an
unambiguous assignment of all the peaks. Noteworthy, for the
photoelectron spectrum of ammonia, the adoption of the cur-
vilinear representation of normal modes improved the theoretical
spectrum but still left significant differences with the experi-
mental one.20 Here we will mainly focus on the use of the
Cartesian representation of normal modes, showing that the
experimental spectrum can be reproduced with a high accuracy
by considering the strong anharmonic couplings between the
totally symmetric stretching mode and the bending mode.

Photoelectron Spectrum of Ammonia

The ground electronic state of ammonia is 1A1, with an
electronic configuration

so that its photoelectron spectrum consists of two transitions, a
lower energy one, corresponding to the removal of an electron
from the least tightly bound 3a1 orbital, the nitrogen lone pair,
and a higher-energy one corresponding to the removal of a 1e
electron.7 The higher-energy absorption, the 2E r X̃1A1 transi-
tion, consists of a broad absorption, with two series of discrete
peaks superimposed on a continuum curve, whereas the lower
energy one, the 2A1′′ r X̃1A1 transition, exhibits a long
vibrational progression, extending over about 2 eV and consist-
ing of 16 well-resolved vibrational peaks, with the maximum
intensity occurring at the seventh peak (see Figure 1).8

The first absorption peak is very weak, thus indicating that
photoionization significantly affects the equilibrium geometry
of the ammonia cation. Since the outermost a1 molecular orbital
is a nonbonding orbital, the removal of an electron from it should
not affect either the 3-fold symmetry of the molecule or the
N-H bonding distance, and thus the vibrational progression
was assigned to the ν2 normal mode of vibration, Herzberg’s
notation,21 along which umbrella motion takes place. The
observed vibrational spacings, of the order of 0.12 eV (970
cm-1), further support that assignment. The strict similarity
between the intensity distribution of the vibrational states of
the photoelectron spectrum with that of the UV absorption at
2168 Å, whose upper electronic state is known to be planar
from the analyses both of the vibrational pattern22 and of the
rotational fine structure of some vibronic peaks,23 led to the
conclusion that the 2A1 ionic state of ammonia has a planar
equilibrium nuclear configuration, belonging to the D3h point
group.

The first attempts to better rationalize the spectrum through
the computation of Franck-Condon factors were quite un-
successful.20,24,25 The main problem was with the intensity

distribution and in particular with the location of the most intense
peak, which theoretical calculation of FC factors predicted to
be the fifth one rather than the seventh. The geometry of the
neutral molecule was known with good accuracy,26 and also
the planar nuclear configuration of the molecular cation was
well assessed, thus the only geometrical parameter which could
be responsible for that discrepancy was the N-H bond length.
The intensity distribution significantly depends on the N-H
distance. Botter and Rosenstock showed that by assuming no
bond length changes the computed spectrum contains significant
contribution from states arising from the simultaneous excitation
of the symmetric stretching mode and the symmetric bending
mode, a sort of vibronic combination bands.24 Those transitions
could change the intensity distribution of the computed peaks
in the higher-energy region, on the assumption that the frequency
of the symmetric stretching mode (ν1) of the planar cation is a
nearly integral multiple of the bending one (ν2).25,20 However,
the high resolution spectrum recorded by Rabalais et al. (see
Figure 1) and more recently by Edvardsson et al. does not
support such a hypothesis. The spectrum consists of a strong
progression, due to excitation of only the bending mode,
accompanied by a much weaker but well-resolved progression,
falling at higher energy. The most intense peak was the eighth
one,8,27 but the origin of the band at the lowest energy was
uncertain: it could be either the 0′ r 0 transition or a hot band
involving those vibrational states of the molecular cation with
larger FC factors. While Rabelais et al. left this question open,
the fine structure of that band obtained by Edvardsson et al.
supports the hypothesis of a hot band.

A better agreement between the predicted and the observed
intensity distribution was obtained by Domcke et al., who used
a somewhat different approach.10 They expanded the potential
energy hypersurface of the cationic state around the equilibrium
geometry of the neutral state, without computing the normal
modes of the final state. The FC factors are then expressed in
terms of quantities which are given by the first and higher-order
derivatives of the two potential energy surfaces with respect to
the normal coordinates of the initial state, evaluated at the
equilibrium geometry of the latter. The spectrum computed in
this way agrees much better with the experimental one, but peak
intensities decay still too fast in the region of higher wavenumbers.

The photoelectron spectrum of NH3 and ND3 was also
theoretically analyzed by Ågren et al., who used a one-
dimensional approach using the decoupled, at first order,
symmetry coordinate of the planar cation and anharmonic
potentials for both the neutral and cationic state. Optimum
geometries and potential energy surfaces were computed at an
ab initio configuration interaction level of approximation. Even
in that case, which does not make use of normal coordinates,
the shape of the computed spectrum agrees well with the
experimental one, but in the higher-energy region the peak
intensities are significantly overestimated.9

Finally, at least to our knowledge, a much more sophisticated
method was adopted by Domcke and coworkers, who used the
multiconfigurational time-dependent Hartree method to study
the internal conversion dynamics of NH3

+ by wave packet
propagation. The photoelectron spectrum was then obtained with
a good accuracy by Fourier transformation of the autocorrelation
function.11,12a The method gives satisfying results by using both
the normal mode coordinates of the initial state11 and curvilinear
coordinates,12 but in both cases Duschinsky’s transformation
of normal modes is avoided.

1a1
22a1

21e43a1
2
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Computational Details

The structures of neutral and cationic ammonia obtained at
different levels of approximationsdensity functional theory
(DFT), Mœller-Plesset perturbation theory (MP), coupled
cluster with single and double excitations (CCSD) and its
approximation CC2, and CCSD(T), i.e., CCSD augmented with
perturbative corrections for connected triple excitationssare
reported in Table 1. Computations at DFT/B3LYP, MP2, and
MP4(SDQ) (MP4 with single, double, and quadruple substitu-
tions) levels of approximation have been carried out by the
Gaussian package:28 CC2, CCSD, full MP4, and CCSD(T)
calculations were performed by the ACES II package.29

Unrestricted formalism was adopted for the NH3
+ radical

cation. Two basis sets were employed: 6-31++G(d,p) with
spherical polarization functions (hereafter DZ) and 6-311++G-
(3df,3pd) (hereafter TZ). Core-valence correlation effects were
included in all the calculations. Energy gradients and Hessian
matrices were evaluated analytically with the only exception
of the MP4(SDQ) level, where numerical derivatives of analyti-
cal gradients were used to get vibrational normal modes and
harmonic frequencies.

Franck-Condon factors have been computed by using both
the rectilinear Cartesian representation of normal modes and
the linearized internal one. The latter has already been used
in the past20 but using values of the equilibrium nuclear
coordinates different from those found by the present energy
optimizations, so that computations with the new geometrical
parameters have been necessary. Anharmonic calculations have
been performed by using the variational method, using as the
basis set a product of harmonic wave functions of the involved
normal modes. Only the two totally symmetric, in C3V point
group, stretching and bending modes have been considered in
calculations since all the other modes do not contribute to the
photoelectron spectrum.

Computations of Franck-Condon factors have been carried
out by using the MolFC package.30,31 Anharmonic corrections
were considered only for the cationic state because a few test
computations showed that those related to the existence of a
double well potential for the neutral state were small. That is
because the computed lowest energy states are well described
by the symmetric and antisymmetric linear combination of the
two lowest energy vibrational states, without showing any
significant contributions of higher-energy harmonic wave func-
tions. From the symmetric vibrational ground state, transition
to vibrational states with even quantum numbers are allowed,
whereas from the antisymmetric one, states with odd quantum

number are excited. Since the symmetric and antisymmetric
vibrational modes of neutral ammonia are separated by only
0.79 cm-1,3 the populations of the two levels are equal, and
therefore symmetry allows the FC factors to be conveniently
computed by using only one equilibrium configuration of neutral
ammonia. The initial state in all the FC calculations is therefore
the harmonic ground vibrational state of the neutral molecule,
the only one significantly populated at room temperature.

The following symmetry adapted linear combinations of the
bending coordinates have been used for both electronic states

in conjunction with the three stretching coordinates ri (Figure
2); �i (eq 1) are the angles which N-Hi bonds form with the
C3 axis; and θij are the ∠HiNHj bending angles.4

Calculation of FC factors requires that the normal modes of
one electronic state are expressed in terms of those of the other
electronic state by means of Duschinsky’s transformation

where Q,Q′ are the normal modes of the electronic states
|ψ〉,|ψ′〉, and J and K are the rotation matrix and the equilibrium
displacement vector, respectively.

If normal modes are expressed as linear combinations of the
adopted nuclear coordinates, S

S0,S0′ being the values of S at equilibrium geometries, expres-
sions for J and K are easily found as follows

which by comparison with eq 2 yields

If normal modes of vibration are available in mass weighted
Cartesian coordinates, as in the most popular packages for
electronic computations, and linearized internal nuclear coor-

TABLE 1: Computed and Experimental Bond Lengths and
Valence Angles (re, Å; θe, degrees) of NH3 (1A1) and NH3

+

(2A1)
1A1

2A1

re θe re

DZa TZ DZ TZ DZ TZ

B3LYP 1.0157 1.0134 108.12 107.18 1.0286 1.0247
MP2 1.0113 1.0109 108.19 106.92 1.0213 1.0190
CC2 1.0122 1.0121 108.16 106.78 1.0217 1.0197
CCSD 1.0125 1.0115 107.85 106.77 1.0233 1.0210
MP4(SDQ) 1.0120 1.0114 107.88 106.76 1.0223 1.0203
MP4 1.0135 1.0141 107.74 106.49 1.0229 1.0216
CCSD(T) 1.0139 1.0138 107.68 106.53 1.0240 1.0224
exp. 1.0124b 106.67b 1.0145c

a DZ is 6-31++G(d,p); TZ is 6-311++G(3df,3pd). b Ref 26.
c Ref 34.

Figure 2. Internal coordinates of ammonia.

{s1a )
1

√3
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Q ) JQ′ + K (2)
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Q ) L-1L′Q′ + L-1(S0 - S′0) (5)

J ) L-1L′, K ) L-1(S0 - S′0) (6)
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dinates are adopted for FC computation, Duschinsky’s trans-
formation is a little more cumbersome13,14

where T and T′ are the normal mode matrices in the Cartesian
representation; B is the transformation matrix from Cartesian
to internal coordinates; and G is the Wilson kinetic energy
matrix.32

Axis switching effects do not need to be considered here
because of the high symmetry of the initial and final states.1,33

Results

The minimum energy geometries computed at different levels
of approximation are reported in Table 1 and compared with
the available experimental data. All the employed methods
predict that the ammonia cation is planar in its ground electronic
state and belongs to the D3h point group. No significant changes
of the NH bond distances with respect to those of the neutral
state are predicted; all the methods predict a slight lengthening
of the bond distance upon ionization by about 0.01 Å, slightly
larger than that suggested by experimental results.34 The MP4
and the coupled cluster methods yield the better agreement with
the experimental geometry of the neutral state, and therefore
we will present here only spectra computed by using geometries
and normal modes obtained at the MP4(SDQ) level of
computation.

In Table 2, the harmonic frequencies of the two electronic
states are reported. Herzberg’s notation has been adopted: ν1

refers to the totally symmetric stretching mode of both neutral
and ionized NH3 and ν2 to the totally symmetric bending mode
of neutral ammonia, which becomes the out of plane bending
mode of the cation. The ν3 and ν4 are the other stretching and
bending normal vibrations, which are degenerate in both the
neutral and the cationic ground states.

The hybrid B3LYP density functional method yields the best
agreement between computed and experimental frequencies, but
the effects due to changes of the vibrational frequencies on FC
factors are largely less important than those due to geometrical
changes; furthermore, the differences between DFT and
MP4(SDQ) frequencies are small for the two modes which are
expected to be active in the photoelectron spectrum, about 50
cm-1 and 30 cm-1 for ν1 and ν2, respectively.

The FC factors obtained by using harmonic approximation
and the Cartesian representation of normal modes are shown in
Figure 3. Five different progressions are clearly visible, each
of them corresponding to progressions of the Q2′ mode with n1′
) 0-4. The convolution of the computed peaks with Gaussian
functions is shown in the inset of Figure 3. The spectrum is
much broader than the experimental one, extending over about
25 000 cm-1, whereas the latter does not exceed 15 000 cm-1.
There are significant discrepancies between the computed and
the observed spectra. Apart from the larger bandwidth, the
maximum peak corresponds to the 4′ r 0 transition for the
bending mode, with n1′ ) 0, whereas in the experimental
spectrum the most intense transition is the 6′ r 0 one.

The appearance of five progressions in the theoretical
spectrum is due both to a large Duschinsky effect which mixes
the symmetric bending and stretching modes, both belonging
to the A1 representation of the C3V point group, and to a slight
but significant component of the displacement K vector for the
totally symmetric stretching mode. The situation is grosso modo
similar to that already found for ethylene: Duschinsky’s
transformation yields a too small displacement for the bending
coordinate and a too large displacement for the stretching one.14

The theoretical spectrum obtained by using the internal
coordinate representation and harmonic approximation is re-
ported in Figure 4. There are only two progressions: the most
intense one corresponds to excitations of only the bending mode,
whereas the much weaker progression corresponds to the
excitation of combination bands with one quantum on the Q1′
mode. In the internal coordinate representation of normal modes,
the component of the displacement vector K for the totally
symmetric stretching mode is very small, and no Duschinsky’s
mixing between the bending and the stretching mode is
predicted. The computed spectrum is in many aspects similar
to that obtained by Harshbarger without exciting the totally
symmetric stretching mode of the cationic state.20 Although it
resembles the experimental one much better than that computed
by adopting the Cartesian coordinate representation, the intensity

TABLE 2: Computed Harmonic (TZ) and Experimental
Vibrational Frequencies (as Wavenumbers, cm-1) of NH3

(1A1) and NH3
+ (2A1)

1A1

ν2
a ν4 ν1 ν3

B3LYP 1026.96 1661.17 3470.85 3589.73
MP2 1024.93 1658.18 3532.58 3679.62
CC2 1029.25 1654.95 3515.04 3658.41
CCSD 1056.43 1676.01 3523.22 3650.46
MP4(SDQ) 1056.72 1676.34 3523.96 3653.71
MP4 1050.54 1659.61 3488.98 3623.47
CCSD(T) 1052.10 1661.78 3492.94 3621.83
expb 932.43 1626.30 3336.11 3443.63

2A1

B3LYP 874.20 1529.29 3340.30 3514.40
MP2 865.03 1563.24 3434.61 3623.02
CC2 865.07 1560.16 3423.25 3611.57
CCSD 877.56 1560.24 3410.52 3588.71
MP4(SDQ) 873.50 1563.57 3423.12 3602.81
MP4 868.55 1555.33 3407.05 3589.01
CCSD(T) 873.19 1551.22 3392.31 3571.61
exp 903.39c 1507.10d 3232.00e 3388.65f

a ν1(2) refers to symmetric stretching(bending). ν3(4) refers to
antisymmetric stretching(bending). b Ref 3. c Ref 34. d Ref 37. e Ref
38. f Ref 36.

J ) T†M-1/2B†G-1B′M-1/2T′ (7)

K ) T†M-1/2B†G-1(S0 - S0) (8)

Figure 3. Franck-Condon factors computed by using the Cartesian
coordinate representation and the harmonic approximation.
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distribution is not well reproduced. Apart from the fact that the
maximum peak height occurs for the 5′ r 0 transition rather
than for the 6′ r 0 one, the most important discrepancies are
observed in the high wavenumber region, where the computed
spectrum decays much faster than the experimental one. The
intensity of the higher-energy transitions is significantly under-
estimated, and therefore the spectrum exhibits only 12 peaks
rather than the observed 16. Harshbarger, who also used the
internal coordinate representation of the normal modes, included
anharmonic effects too, for both the neutral and the cationic
species, without significantly improving the accuracy of the
theoretical results, probably because of the approximate treat-
ment of the kinetic energy terms. Thus, in the light of previous
theoretical results, there are two ways to be followed: one
consisting of adopting true curvilinear coordinates with the exact
treatment of the kinetic energy terms, the other being based on
the Cartesian representation but with a full treatment of the
anharmonic effects for the high energy states of the cationic
species. Here we will focus on the latter way.

The potential energy surface as a function of the Q1′ and the
Q2′ normal modes has been calculated at the MP4(SDQ)/TZ level
of approximation, over a grid of about 4300 points, covering
the range 0.57 e r e 1.65 Å and 40.4° e θ e 120°. The
potential energy has been fitted by a 16 degree polynomial, with
maximum order 8 in each variable Q1′ and Q2′ . The polynomial
coefficients are reported in the Supporting Information. Since
in the D3h point group the totally symmetric stretching and the
out of plane bending belong to different irreducible representa-
tions, all the terms in odd powers of Q2′ are zero. The vibrational
states have been then computed by the variational method, using
analytical integrals.35 Convergence on the lower excited vibra-
tional states of interest has been obtained by using 40 harmonic
oscillator basis functions for each mode, centered in the
minimum energy position of the cationic state. Eigenstates have
been computed by direct diagonalization of the Hamiltonian
matrix.

The energy of low lying vibrational states is reported in Table
3 together with the available experimental data.34,36-38 The
agreement is not as good as that obtained by previous computa-
tions,39 but it is certainly sufficient for discussing the photo-
electron spectrum of ammonia. The choice of using polynomial
functions for expressing the potential energy surface strongly
affects the accuracy of the computed vibrational energy;
however, polynomial functions greatly simplify the calculation
of the FC factors, and since our main intent is that of finding

out the most practical way for computing FC factors, to be
applied to larger size molecules too, we have preferred to follow
this way rather than using other approaches which have been
proved to give a better accuracy on the computed frequencies.39

The computed FC factors are reported in Figure 5 and
compared with the observed relative intensities of the high
resolution spectrum of Rabelais et al.8 The agreement between
the computed and the observed spectra is satisfyingly good,
concerning both the intensity distribution and the bandwidth.
The whole spectrum is well reproduced, especially concerning
its decay in the longer wavenumber region, which had posed
problems in previous theoretical investigations.9 The experi-
mental bandwidth is also well reproduced by FC calculations:
Rabelais’ experimental spectrum shows 16 well-resolved peaks,

Figure 4. Franck-Condon factors computed by using the linearized
internal coordinate representation and the harmonic approximation.

TABLE 3: Wavenumbers (cm-1) and Assignments of the
Lowest Excited Vibrational States of NH3

+ at the
Anharmonic Level of Approximation

ω ω

calc. obs.a n1′ n2′ coeff calc. obs.a n1′ n2′ coeff

0 0 0 0 0.99 7607 - 2 1 0.95
921 903 0 1 0.99 1 3 -0.24
1873 1844 0 2 0.98 8052 7958 0 8 0.69
2852 2813 0 3 0.96 0 6 0.11

0 5 -0.16 0 10 -0.41
3373 3232 1 0 0.98 0 12 0.10
3855 3807 0 4 0.92 1 6 -0.48

0 6 0.20 8217 - 1 5 0.68
4286 4128 1 1 0.97 0 3 0.11
4878 4821 0 5 0.88 0 5 0.28

0 7 -0.27 0 7 0.31
5231 - 1 2 0.94 1 7 -0.32
5920 5852 0 6 0.88 2 3 -0.41

0 8 -0.32 2 5 -0.11
6204 6022 1 3 0.88 3 5 0.11

0 3 0.18 8547 - 2 2 -0.91
0 5 0.27 2 4 0.11

6704 - 2 0 0.94 1 4 -0.32
6979 6899 0 7 0.76 9139 9030 0 9 0.62

0 9 -0.37 0 7 0.12
7200 - 1 4 0.76 0 11 -0.44

1 6 -0.27 0 13 0.13
1 7 -0.51

a From ref 39 and references therein.

Figure 5. Franck-Condon factors computed by using the Cartesian
coordinate representation and the anharmonic potential energy (|)
compared with observed intensities from ref 8 (b) and from ref 27
(×).
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with a little not resolved tail, whereas the theoretical one exhibits
two more, which have been indeed observed in the Edvardsson
spectrum.

Because of its excellent resolution, the comparison with
Edvardsson’s spectrum is paradoxically more difficult because
some of the peaks, but not all, show fine structures. We find a
still better agreement with Edvardsson’s relative intensities than
with Rabelais’ ones for the lower and the higher-frequency
region of the spectrum, namely for those transitions which show
fine structure, whereas the middle frequency region is signifi-
cantly underestimated. However, the situation can be reversed
if we differently scale relative intensities. By making coincident
the computed and the experimental intensities of the 8′ r 0
transition, we have a very good agreement with Edvardsson’s
spectrum in the middle frequency region, with a significant
overestimation of all the transition occurring from the 3′ r 0
to the 6′ r 0.

The computed spectrum also shows the presence of a second
much weaker progression, which the present FC calculation
assigns to transitions to vibrational states with excitations on
the bending mode Q2′ and a single quantum on the totally
symmetric stretching mode Q1′, in agreement with the theoretical
results of Viel et al.11,12 That weaker progression is very well
resolved in the spectrum of Edvardsson et al.,27 and it was
tentatively assigned to transitions to a vibrational progression
of the asymmetric bending mode with one more quantum on
the symmetric bending mode Q2′ . The first mode is of E
symmetry, and therefore vibronic couplings should be invoked
to justify the presence of such combination bands in the
experimental spectrum.

The weak progression observed by Edvardsson et al. starts
just after the sixth peak of the stronger progression, about 5400
cm-1 after the 0′ r 0 transition, and exhibits a maximum for
the third peak. In the computed spectrum, the weak progression
also starts after the sixth peak. In Figure 5, theoretical and
observed intensities are shown. The adopted scaling was the
same as for the main progression; namely, we made coincident
the computed and the experimental intensities of the 6′ r 0
transition. The observed relative intensity of the highest peak
of the weaker progression is 5.6%, and the computed value is
5.3%. The good agreement therefore supports our assignment.

The results reported in Table 3 explain why the other
progressions which characterize the spectrum in harmonic
approximation (see Figure 3) lose their intensity when anhar-
monic corrections are taken into account. Let us explicitly
consider the second progression, which exhibits a maximum at
about 8000 cm-1 for the 1′,5′ r 0,0 transition, with a high
intensity, comparable with the 0′,6′r 0,0 one. The state |1′5′〉,
which has an FC integral of -0.26 with the ground vibrational
state of neutral ammonia, is anharmonically coupled to a few
vibrational states with n1′ ) 0, i.e., |0′3′〉, |0′5′〉, |0′7′〉, and a
few states with n1′ ) 2, i.e., |2′3′〉, |2′5′〉, which have both positive
FC integrals. Because of that, the eigenstate with the highest
contribution of the |1′5′〉 harmonic state has now an FC integral
with the |00〉 of only -0.085, and the corresponding FC factor
decreases 1 order of magnitude upon anharmonic correction.
The same reasoning applies also to the other progressions which
disappear in the spectrum obtained at anharmonic level of
approximation.

The intensities of the transitions occurring at lower wave-
numbers are slightly underestimated, although the quality of
the computed states should be higher than those at higher energy.
On the assumption that the first observed band is really a hot
band, as experimental and theoretical evidence leads us to

suppose,11,27 a possible explanation of the low intensity is that
other peaks of such a hot progression could be hidden under
the lower energy peaks. Indeed, the calculation of FC factors
from the |01〉 state of neutral ammonia indicates that the
transition 0′0′ r 01 is not the most intense one, but it should
be accompanied by at least four other transitions, which have
still higher intensities. Those hot transitions could also affect
the intensities of the peaks of the main progression making the
comparison of the computed and the observed spectrum even
more difficult.

Conclusion

Prediction of the band shapes for radiative transitions between
electronic states with significantly different minimum energy
nuclear configurations along an angular coordinate requires a
little caution. In this paper we have shown that the adoption of
the rectilinear Cartesian coordinate representation of normal
modes requires the inclusion of higher-order anharmonic terms
of the potential energy hypersurface. These terms are necessary
to correct the large components of the displacement vector which
Duschinsky’s transformation assigns to stretching coordinates
in the rectilinear coordinate representation. If the internal
coordinate representation is adopted, anharmonic effects seem
to play a minor role, but the dependence of the kinetic energy
matrix from coordinates must be taken into account. Work is
in progress along this line.

Supporting Information Available: Coefficients of the
polynomial fit of the MP4(SDQ)/6-311++G(3df,3pd) potential
energy of NH3

+. This material is available free of charge via
the Internet at http://pubs.acs.org.
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